*2(i1(x), x) -> 1
*2(1, y) -> y
*2(x, 0) -> 0
*2(*2(x, y), z) -> *2(x, *2(y, z))
↳ QTRS
↳ DependencyPairsProof
*2(i1(x), x) -> 1
*2(1, y) -> y
*2(x, 0) -> 0
*2(*2(x, y), z) -> *2(x, *2(y, z))
*12(*2(x, y), z) -> *12(y, z)
*12(*2(x, y), z) -> *12(x, *2(y, z))
*2(i1(x), x) -> 1
*2(1, y) -> y
*2(x, 0) -> 0
*2(*2(x, y), z) -> *2(x, *2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
*12(*2(x, y), z) -> *12(y, z)
*12(*2(x, y), z) -> *12(x, *2(y, z))
*2(i1(x), x) -> 1
*2(1, y) -> y
*2(x, 0) -> 0
*2(*2(x, y), z) -> *2(x, *2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(*2(x, y), z) -> *12(y, z)
Used ordering: Polynomial Order [17,21] with Interpretation:
*12(*2(x, y), z) -> *12(x, *2(y, z))
POL( 1 ) = 1
POL( 0 ) = max{0, -1}
POL( *12(x1, x2) ) = x1 + x2
POL( i1(x1) ) = max{0, -1}
POL( *2(x1, x2) ) = x1 + x2 + 1
*2(x, 0) -> 0
*2(i1(x), x) -> 1
*2(1, y) -> y
*2(*2(x, y), z) -> *2(x, *2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(*2(x, y), z) -> *12(x, *2(y, z))
*2(i1(x), x) -> 1
*2(1, y) -> y
*2(x, 0) -> 0
*2(*2(x, y), z) -> *2(x, *2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(*2(x, y), z) -> *12(x, *2(y, z))
POL( 1 ) = 1
POL( 0 ) = 1
POL( *12(x1, x2) ) = x1 + 1
POL( i1(x1) ) = max{0, x1 - 1}
POL( *2(x1, x2) ) = x1 + x2 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
*2(i1(x), x) -> 1
*2(1, y) -> y
*2(x, 0) -> 0
*2(*2(x, y), z) -> *2(x, *2(y, z))